翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

chemical potential : ウィキペディア英語版
chemical potential
In thermodynamics, chemical potential, also known as partial molar free energy, is a form of potential energy that can be absorbed or released during a chemical reaction. It may also change during a phase transition. The chemical potential of a species in a mixture can be defined as the slope of the free energy of the system with respect to a change in the number of moles of just that species. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant, and at constant temperature. When pressure is constant, chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium the total sum of chemical potentials is zero, as the free energy is at a minimum.〔
Page references in this article refer specifically to the 8th edition of this book.〕〔
〕〔

In semiconductor physics, the chemical potential of a system of electrons at a temperature of zero Kelvin is known as the Fermi energy.
==Overview==

Particles tend to move from higher chemical potential to lower chemical potential. In this way, chemical potential is a generalization of "potentials" in physics such as gravitational potential. When a ball rolls down a hill, it is moving from a higher gravitational potential (higher elevation) to a lower gravitational potential (lower elevation). In the same way, as molecules move, react, dissolve, melt, etc., they will always tend naturally to go from a higher chemical potential to a lower one, changing the particle number, which is conjugate variable to chemical potential.
A simple example is a system of dilute molecules diffusing in a homogeneous environment. In this system, the molecules tend to move from areas with high concentration to low concentration, until eventually the concentration is the same everywhere.
The microscopic explanation for this is based in kinetic theory and the random motion of molecules. However, it is simpler to describe the process in terms of chemical potentials: For a given temperature, a molecule has a higher chemical potential in a higher-concentration area, and a lower chemical potential in a low concentration area. Movement of molecules from higher chemical potential to lower chemical potential is accompanied by a release of free energy. Therefore it is a spontaneous process.
Another example, not based on concentration but on phase, is a glass of liquid water with ice cubes in it. Above 0°C, an H2O molecule that is in the liquid phase (liquid water) has a lower chemical potential than a water molecule that is in the solid phase (ice). When some of the ice melts, H2O molecules convert from solid to liquid where their chemical potential is lower, so the ice cubes shrink. Below 0°C, the molecules in the ice phase have the lower chemical potential, so the ice cubes grow. At the temperature of the melting point, 0°C, the chemical potentials in water and ice are the same; the ice cubes neither grow nor shrink, and the system is in equilibrium.
A third example is illustrated by the chemical reaction of dissociation of a weak acid, such as acetic acid, HA, A=CH3COO.
:HA H+ + A
Vinegar contains acetic acid. When acid molecules dissociate, the concentration of the undissociated acid molecules (HA) decreases and the concentrations of the product ions (H+ and A) increase. Thus the chemical potential of HA decreases and the sum of the chemical potentials of H+ and A increases. When the sums of chemical potential of reactants and products are equal the system is at equilibrium and there is no tendency for the reaction to proceed in either the forward or backward direction. This explains why vinegar is acidic, because acetic acid dissociates to some extent, releasing hydrogen ions into the solution.
Chemical potentials are important in many aspects of equilibrium chemistry, including melting, boiling, evaporation, solubility, osmosis, partition coefficient, liquid-liquid extraction and chromatography. In each case there is a characteristic constant which is a function of the chemical potentials of the species at equilibrium.
In electrochemistry, ions do ''not'' always tend to go from higher to lower chemical potential, but they ''do'' always go from higher to lower ''electrochemical potential''. The electrochemical potential completely characterizes all of the influences on an ion's motion, while the chemical potential includes everything ''except'' the electric force. (See below for more on this terminology.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「chemical potential」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.